0人評分過此書

機器學習及其應用

出版日期
2019
閱讀格式
EPUB
書籍分類
學科分類
ISBN
9789576819629

本館館藏

借閱規則
當前可使用人數 2
借閱天數 14
線上看 0
借閱中 0
選擇分享方式

推薦本館採購書籍

您可以將喜歡的電子書推薦給圖書館,圖書館會參考讀者意見進行採購

讀者資料
圖書館 南華大學
* 姓名
* 身分
系所
* E-mail
※ 我們會寄送一份副本至您填寫的Email中
電話
※ 電話格式為 區碼+電話號碼(ex. 0229235151)/ 手機格式為 0900111111
* 請輸入驗證碼
本書內容涉及穩健的矩陣回歸模型、初等模型的解析解、面向大規模學習的隨機優化、張量分解、基於遞歸神經網路的圖像描述算法、標記分布學習及其應用,以及軟體缺陷挖掘。
  楊健教授介紹了幾種全新的穩健回歸模型,包括基於核範數的穩健矩陣回歸,基於推廣冪指數分布的穩健矩陣回歸,基於核-L1範數的聯合矩陣回歸,以及基於樹結構核範數的穩健矩陣回歸。
  林宙辰教授討論了若干具有解析解的初等模型,以及其在圖像處理領域的諸多成功應用。
  在大規模數據的機器學習算法中,隨機近似是一種新興的技術手段。張利軍教授介紹了階段混合梯度下降、隨機臨近梯度下降,能夠有效降低學習算法的空間和時間複雜度。
  張量結構往往用於刻劃數據的多源關係。徐增林教授介紹了非參非線性張量分解,能夠提高分解模型的精確度。
  圖像描述是近年來有挑戰性的任務。張長水教授介紹了基於注意力的遞歸神經網路編碼器,刻畫了圖像和句子之間的編碼關係。
  和圖像描述類似,大量的機器學習樣本涉及標記多義性的問題。耿新教授詳細介紹了一種新的機器學習設計法——標記分布學習,為解決標記多義性開闢了一條新途徑。
  最後,黎銘副教授探討了機器學習技術在軟體缺陷挖掘中的創新應用,以及其中面臨的若干挑戰性問題。
  • 出版地 臺灣
  • 語言 繁體中文

評分與評論

請登入後再留言與評分
幫助
您好,請問需要甚麼幫助呢?
使用指南

客服專線:0800-000-747

服務時間:週一至週五 AM 09:00~PM 06:00

loading